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INTRODUCTION  

The design and operation of a continuous casting mold to consistently produce high quality steel requires 
careful selection and control of many variables, such as mold oscillation [1], powder practice, heat transfer and 
taper, according to the casting speed, steel grade, section size, and other conditions [2, 3].  Manfred Wolf was the 
most knowledgeable student of this complex subject of continuous casting of steel that the world has ever 
known. He devoted his career to identifying technologies to achieve these objectives and communicating them 
to those who could make a difference.  Taper is one of these important practices, and is the subject of this paper. 

During continuous casting of steel slabs, the mold walls must be tapered such that they remain in contact with 
the solidifying steel shell while it cools and shrinks.  This is done by relative movement of the upper and lower 
screw adjustments to change the angle of hotface slope of the narrowface.  Taper is measured before and after 
casting with hand-held gages and should be monitored during operation using inclinometers.  Proper taper 
ensures uniform heat transfer between the mold and steel surfaces, without exerting excessive contact forces on 
the hot and weak shell.  Insufficient taper causes reduced heat flux across the mold/strand interface, leading to a 
thinner, weaker shell [4]. This may cause breakouts, where liquid steel bursts through the shell, or bulging below 
mold, which leads to longitudinal quality problems such as off-corner “gutter” and subsurface longitudinal 
cracks [5].  Excessive taper also causes many problems, including mold wear, friction leading to axial tensile 
stress causing transverse cracks, and even buckling of the wide face shell, gutter and associated problems [6].  

Several efforts have been conducted to predict ideal mold taper in previous work [6-11].  These include 
simulations of square billets, [7, 11], round billets, [10]; and slabs[6, 9].  None has quantitatively investigated the 
effect of casting conditions on ideal taper.  In this work, shell shrinkage is predicted using a finite element 
elastic-viscoplastic thermal-stress model of the continuous casting process. Ideal tapers are then predicted for 
different casting speeds, working mold lengths, steel grades and mold fluxes.  

Basic mold taper calculation – Taper of the narrowface mold walls is needed to compensate for shrinkage of 
the wide face shell, which is caused mainly by thermal strain controlled by mold heat transfer.  Wideface taper, 
due to shrinkage of the narrow face, is not as critical because the long, unsupported shell will always bulge 
under ferrostatic pressure to contact the wide face, except for very near the corners.  Narrowface taper is defined
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by the horizontal shift in position of each mold plate, ΔW, per strand width, W, (Eq. 1), or by dividing this 
result by mold length, L, (Eq. 2).    Care should be taken not to confuse which of the two methods is used, 
(percent per mold, or percent per unit length). 

 %1002(%) ⋅
Δ

=
W
Wtaper  (1) 

 %1002)/(% ⋅
Δ

=
LW

Wmtaper  (2) 

Ideal taper is affected by mold heat transfer, casting speed, steel grade, powder composition and other variables.  
Taper due to thermal shrinkage of the wideface can be crudely estimated by multiplying the drop in shell 
surface temperature between the top and bottom of the mold (1500-1000oC in Fig. 1) by the thermal expansion 
coefficient (about 0.002%/oC).  This equals 1%/mold, which is typical narrowface taper.  Further improvement 
requires consideration of the heat removal distribution down the mold, mold distortion, interfacial flux layer 
behavior, mold contour in a funnel-shaped mold, and dynamic effects during automatic width change. 

THERMAL SHRINKAGE MODEL  

A finite-element elastic-viscoplastic thermal-stress model, CON2D [12-14] was applied to investigate ideal taper 
of slab molds by predicting shrinkage of the solidifying steel shell.  The model solves a 2D finite-element 
discretization of the transient heat conduction equation in a Lagrangian reference frame that moves down 
through the caster with the solidifying steel shell.  Next, the force equilibrium, constitutive, and strain 
displacement equations are solved under a condition of generalized plane strain in both the width and casting 
directions [12].  Thermal and mechanical behavior are studied here in a longitudinal slice through the centerline 
of the shell (Fig. 2).  This slice domain has been shown to be an accurate and economical method to 
approximate taper, despite the corner effects [11]. 
 

Fig. 1:Wide face shrinkage and narrowface taper Fig. 2: 1-D Slice Simulation Domain for CON2D 
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Heat Flow Model – Heat flux leaving the surface of the solidifying shell is calculated using a finite-difference 
model of shell solidification, CON1D, that features detailed treatment of the slag layers in the interfacial gap, 
coupled to a 2-D computation of mold heat conduction [15].  Typical CON1D predictions are compared in Fig. 3 
with measurements from a variety of sources, including those compiled by Manfred Wolf [2].  For high carbon 
steel simulations, the instantaneous heat flux is obtained as a function of mold residence time by differentiating 
the curve fit of average mold heat extraction measurements given elsewhere[14].  

The total heat flux (integrated from the heat flux profile) was forced to match Eq. 3 [16], which was obtained 
from a curve fit of many measurements under different conditions at a typical slab caster [16]. 
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Where QG is the mean heat flux (MW/m2), μ is the powder viscosity at 1300 oC, (Pa-s), Tflow is the melting 
temperature of the mold flux (oC), Vc is the casting speed (m/min), and %C is the carbon content.  This equation 
quantifies the well-known facts (documented by Wolf [3]) that heat flux drops for peritectic steels (near .107%C) 
and for mold powders with high solidification temperatures, (which hence form a thicker insulating flux layer 
against the mold wall).  There is also a very slight drop in heat flux for mold powders with higher viscosity.  
This equation produces results similar to other measurements, as shown in Fig. 3 (800mm working mold length 
for Table I conditions for 0.07%C steel) 

Stress Model - The total strain is 
composed of elastic, thermal, inelastic and 
flow-strain components.  Thermal strain 
dominates the total, and depends on 
temperature and steel grade, as shown in 
Fig. 4.  Unified plastic-creep constitutive 
models are used to capture the 
temperature, strain-rate, phase fraction, 
and grade sensitivity of steel strength at 
high temperature. The instantaneous 
equivalent inelastic strain rate depends on 
the current equivalent stress, temperature, 
the carbon content, and the current 
equivalent inelastic strain, which 
accumulates below the solidus 
temperature.  When the steel is mainly 
austenite phase, (%γ >90%), Model III by 

Kozlowski [17] was applied.  This function matches tensile test measurements of Wray [18] and creep test data of 
Suzuki [19].  When the steel contains significant amounts of soft delta-ferrite phase (%δ >10%), a power-law 
model is used [14], which matches measurements of Wray above 1400 oC [20]. Fig. 5 shows the accuracy of the 
constitutive model predictions compared with stresses measured by Wray [18] at 5% strain at different strain 
rates and temperatures.  This figure also shows the higher relative strength of austenite, which is important for  
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Fig. 3: Measured Average Mold Heat Flux  
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shrinkage of the solidifying shell, and greatly affects the grade dependence of ideal taper.  Further details 
regarding the model formulation are presented elsewhere, including its extensive validation with both analytical 
solutions and plant measurements [11, 14]. 

IDEAL TAPER CALCULATION 

Several different phenomena influence ideal taper, which is calculated in this work with Eq. 1 by combining 
each contribution to the change in strand width, ΔW, relative to the mold wall position at ambient temperature: 

 ΔW (mm) = ΔWshell – ΔWNF-D – ΔWWF-E – ΔWWF-D – ΔWFUNNEL – ΔWFLUX (4) 

ΔWshell is the decrease in width of the wideface due to shrinkage of the shell (mm), calculated with CON2D.  
ΔWNF-D is the narrow face distortion down the mold minus the distortion in the meniscus,  
ΔWWF-E is the wide face expansion at the meniscus minus the wide face expansion down the mold,  
ΔWWF-D is the wide face distortion,  
ΔWFUNNEL is decrease in wideface perimeter due to the change in mold cavity dimensions down a funnel mold,   
ΔWFLUX is the flux layer thickness down the mold minus that at the meniscus. 

The distorted shape of a typical standard slab mold was computed with a 3-D finite element model [21] and is 
shown in Fig. 6, magnified fifty times. This distortion is estimated here using three components, for expansion 
of the wideface mold plates, distortion (bending) of the wideface, and narrowface distortion.  

Narrow face distortion- The narrowface mold walls bend towards the molten steel, imparting curvature to the 
mold shape that helps to match the natural curved shrinkage profile of the solidifying shell.  Narrowface 
distortion is estimated from the temperature differences between the hot and cold faces computed for the narrow 
face, such as shown in Fig. 8: 
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ΔWNF-D is the narrowface distortion at a distance x below the top of the mold; thot and tcold are the thicknesses of 
the hot and cold layers of the narrow face plate. An equivalent thickness is added to tcold to account for the 
stiffness of the water jacket. Ehot and Ecold are the elastic modulus of the hot and cold layers; αhot is the thermal 
expansion coefficient of the hot copper layer; L is the mold length. hotT and coldT are the averages of the 
linearized temperature profiles along the hot and cold faces, calculated with CON1D, as shown in Fig. 8. for a 
700mm long mold (600 mm working length), thot of 35 mm and tcold of 95 mm.  These conditions and results 
reasonably match the 3-D model case in Fig. 6, where the maximum distortion is 1mm.  For the standard slab 
caster studied here the mold length is 900mm (800 mm working length), thot is 35 mm and tcold is 95 mm. For 
the thin slab caster, the mold length is 1100mm (1016mm working length), thot is 25 mm and tcold is 221 mm. 

Wide face expansion- If the narrow faces are clamped rigidly between the wide face mold plates, and backlash 
of the screws allows slight movement of the narrow faces, then differences in thermal expansion of the top and 
bottom of the widefaces during operation can cause affect mold taper.  This wideface expansion is estimated 
from the mold temperatures obtained with CON1D using Eq. (7): 
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Where αmold is the thermal expansion coefficient of the copper, W is the wideface width, Tcold and Thot are the 
linearized hot face and cold face temperatures, shown in Fig. 9. Tref is the average linearized mold temperature 
at the meniscus, chosen to make ΔWWF-E zero at the meniscus. 
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Fig. 6: Distortion in ¼ standard slab mold, 
(with computed temperature contours) [21] 

Fig. 7: Funnel mold shape description. 
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Wide face distortion- The solidifying shell must navigate around the distorted wideface shape, whose 
maximum may exceed 1mm.  This significant distortion greatly affects wideface taper, which helps to explain 
why widefaces are usually not tapered much.  Simple calculations show, however, that this distortion has 
negligible effect on the shell width, so ΔWWF-D can be ignored in narrowface taper design. 

Effect of funnel-mold shape- In most thin slab casters there is a funnel-shaped cavity in the wide faces of the 
mold to allow the submerged entry nozzle to pour molten steel into the mold. This decrease in wideface 
perimeter with distance down the mold changes the ideal narrowface taper.  It can be calculated from:   
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Where the funnel dimensions, shown in Fig. 7, in this work are a=1020 mm, b=60 mm, and D=750 mm 

This contribution to mold taper is very important in most thin slab casters. For standard slab casting, with 
parallel plate mold walls, this term is naturally equal to zero. 

Effect of flux-layer solidification- The solidified flux layer in the interfacial gap should increase in thickness 
with distance down the mold length, especially if it is continuous and attached to the mold wall.  This is 
calculated by CON1D, as explained elsewhere [15].  This effect represents an equivalent taper, and would allow 
less taper of the mold walls, if ΔWFLUX is taken into account.      

RESULTS 

Simulations were performed to investigate the effects of casting speed, heat flux profile shape, powder 
composition, and steel grade on ideal taper.  Further computations explore taper in funnel molds and during 
automated width changes.  Taper is presented as %/mold unless otherwise specified. Sample results are given in 
Figs. 10-12 for a typical 200 mm thick slab mold, based on standard conditions of 1000 mm width, 800 mm 
working mold length, .07%C, 1.5m/min casting speed, and 1120 oC flux solidification temperature.   

Figure 12 shows that thermal shrinkage strain is very large, dominating the need for taper.  As for every case 
studied in this work, significantly more mold taper is needed just below the meniscus than near mold exit.  
Narrow face distortion tends to lessen ideal taper and to make the profile somewhat more linear, beyond 100mm 
below the meniscus.  The increase in flux layer thickness down the mold appears to greatly lessen ideal taper.  
Flux layer stability is likely always difficult, however, so perhaps taper design should not rely on this effect.  
Wideface expansion has a similar trend, but not as large.  Its effect can be lessened by careful adjustment of the 
screws to minimize backlash, or by the use of inclinometers during operation.  Thus, ideal taper is presented 
both using Eq. 4, and using “shell shrinkage – mold distortion”, which neglects the flux layer and wideface 
expansion effects. 
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Fig. 11: Steel shell surface temperature for 
standard (0.07%C at 1.5m/min) and thin slab 
casting (0.074%C at 3.9 m/min). 

Effect of funnel mold- Typical results for thin slab casting in a funnel mold are presented in Figs. 10, 11, and 
13.  Thin slab casting has higher casting speed (3.9 m/min) than conventional slab casting, so produces higher 
heat flux, higher surface temperature, and less shrinkage.  The funnel has a huge effect in compensating the 
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need for taper, as shown in Fig. 13.  The net result is that ideal taper is negative, meaning that the mold width at 
mold exit should be slightly wider than at the meniscus. 

Effect of casting speed- The effect of casting speed is shown in Figs. 14 to19, for a typical low-carbon 
(0.07%C) steel.  The conditions and results at mold exit are tabulated in Table I for different steel grades. 
Higher casting speed produces less dwell time in the mold, a higher surface temperature, less shell shrinkage, 
and less taper.  The decrease in shrinkage is not as much as might be expected, however, because the higher 
average mold heat flux lowers the shell surface temperature (for a given time).  The next effect of casting speed 
on shrinkage is thus relatively small, as seen in Fig. 17.   

More important are the effects of mold distortion and flux layer changes.  Increasing casting speed increases 
narrowface distortion, which tends to lessen ideal taper.  Changes in flux layer thickness and wideface 
expansion, if present, would greatly lessen ideal taper, as seen by comparing Figs. 18 and 19.   

Table I: Casting speed and steel grade study 

Carbon content 0.13% 0.27% 0.47%
%Mn, %Si .57%, .22% .75%, .22%
Mold flux viscosity at 1300C (Pa-s) 0.083 0.192 0.083 0.083
Flux solidification Temperature ( C ) 1120 1215 1120 1120
Casting Speed (m/min) 1.1 1.5 1.9 1.2 1.5 1.2 1.5 1.04 1.3 1.5
Tundish temp (C) 1567 1555 1559 1542 1567
Heat Flux (MW/m2), Q(Eq.3) 1.39 1.61 1.80 1.16 1.29 1.48 1.65 1.39 1.54 1.64
Surface Temp mold exit (C) 1127 1127 1132 1238 1241 1113 1117 1095 1093 1115
Shrinkage 50mm below meniscus CON2D 2.85 2.73 2.73 1.81 1.62 2.42 2.07 2.30 1.95 2.31
Shrinkage mold exit (mm) CON2D 6.28 6.21 6.14 4.09 3.93 5.45 5.20 4.99 4.84 4.35
Shrinkage mold exit (%/mold) CON2D 1.26 1.24 1.23 0.82 0.79 1.09 1.04 1.00 0.97 0.87
Flux layer relative to meniscus (mm) 1.47 1.25 1.14 2.34 2.07 1.53 1.36 1.44 1.35 1.51
NF distortion relative to meniscus(mm) -0.57 -0.66 -0.74 -0.47 -0.53 -0.61 -0.66 -0.56 -0.64 -0.68
WF expansion relative to meniscus (mm) 0.40 0.42 0.45 0.29 0.33 0.42 0.41 0.37 0.44 0.43
Ideal Taper mold exit  (mm) 4.98 5.20 5.29 1.93 2.07 4.11 4.09 3.75 3.68 3.09
Ideal Taper mold exit  (%/mold) 1.00 1.04 1.06 0.39 0.41 0.82 0.82 0.75 0.74 0.62
Shell shrinkage - NF distortion (mm),exit 6.85 6.87 6.88 4.56 4.46 6.05 5.86 5.55 5.48 5.03
Shell shrinkage - NF distortion (%/mold) 1.37 1.37 1.38 0.91 0.89 1.21 1.17 1.11 1.10 1.01

.3%, .03%
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Fig. 13: Ideal taper for funnel-mold thin-slab 
casting (0.074%C and 3.9 m/min). 
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Fig. 16: Shell surface temperature for different casting 
speeds  (0.07 %C conditions in Table I) 

Fig. 17: Total shell shrinkage for different casting 
speeds (0.07 %C conditions in Table I) 
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Fig. 19: shell shrinkage - narrowface distortion for 
different speeds  (0.07 %C conditions in Table I) 
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Effect of mold length- Longer molds naturally need more taper (per 
mold), owing to the extra cooling and shrinkage from the extra dwell 
time, but need less taper (per meter) owing to decreasing heat flux 
further below the meniscus.  For a given set of conditions (same steel 
grade, same mold powder and same casting speed), the shrinkage 
profiles for different mold lengths all collapse onto a single curve. 
Results for any shorter mold length can be found simply by truncating 
the curve at the desired working mold length. This is possible because 
the heat flux function chosen in this work is a function only of time in 
the mold, and the shrinkage is governed by the heat flux profile. 

Effect of Heat Flux Curve Shape- Shell shrinkage is quite sensitive 
to minor changes in the heat flux profile, especially near the 
meniscus.  For example, Fig. 20 shows two similar heat flux curves 
with the same average, but with slightly different shapes.  One has 

slightly higher heat flux near the top of the mold, while the other has slightly higher heat flux in the lower 
portions of the mold. Fig. 21 shows the corresponding temperature profiles, which are colder for the higher 
meniscus heat flux case. Fig. 22 shows that the corresponding shrinkage profiles differ much more. Specifically, 
the case with a higher initial heat flux, followed by a sharper drop produces more shrinkage at mold exit.  This 
means that ideal taper depends on both the magnitude and shape of the heat flux curve.  Because heat flux near 
the top of the mold is difficult to control, it would be wise to design the mold with some means to accommodate 
casting with non-optimal taper in that region 
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Fig. 21: Surface temperatures using heat flux curves in 
Fig. 20. 

Fig. 22: Shrinkage predictions using heat flux curves 
in Fig. 20. 

Effect of mold powder composition-The effect of mold powder composition is shown in Table II, Figs. 23 to 
28. The change in mold powder composition is taken into account changing the powder viscosity and the 
solidification temperature. The most important is the effect of the solidification temperature. Increasing 
solidification temperature tends to lower the heat flux, (Fig. 23) owing to the thicker solid slag layer that forms.  
As a result the steel shell temperatures are higher, (Fig. 25) leading to less shell shrinkage (Fig. 26) and 
consequently lower ideal taper (Figs. 27 and 28).  

Effect of Steel Grade-Ten simulations were conducted to study the effect of steel grades containing 0.07, 0.13, 
0.27, 0.47%C, assuming mold powder properties typically used for each grade. Changing steel grade affects 
taper in two main ways, which tend to offset each other somewhat.  Firstly, it changes the steel thermal and 
mechanical properties, most notably the thermal expansion, which is larger for peritectic steels, as seen in Fig. 
4. Secondly, it affects the mold heat flux, which is 20% lower for peritectic steels (Eq. 3, Table I, and Fig. 29), 
due to deeper oscillation marks, and the higher solidification temperature of the mold flux used for these grades. 
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Fig. 20: Heat flux profiles with minor 
variations in curve shape 
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Fig. 24: Effect of powder composition on shell 
thickness (Table II conditions) 
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temperature (Table II conditions) 

Fig. 26: Effect of powder composition on total shell 
shrinkage strain (Table II conditions) 
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Fig. 28: Effect of powder composition on shrinkage - 
narrow face distortion (Table II conditions) 
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Table II: Mold powder composition study 
Steel grade
Mold flux Viscosity at 1300C (Pa-s) 0.115 0.083 0.225 0.192
Flux solidification Temperature ( C ) 1040 1120 1160 1215
Casting Speed (m/min) 1.5 1.5 1.5 1.5
Tundish temp (C) 1567 1567 1567 1567
Heat Flux (MW/m2), Q(Eq.3) 1.71 1.61 1.41 1.36
Surface Temp mold exit (C) 1090 1127 1202 1220
Shrinkage 50mm below meniscus CON2D 3.08 2.73 2.12 1.88
Shrinkage mold exit (mm) CON2D 6.82 6.21 4.98 4.64
Shrinkage exit (%/mold) CON2D 1.36 1.24 1.00 0.93
Flux layer relative to meniscus (mm) 1.12 1.25 1.59 1.73
NF distortion relative to meniscus(mm) -0.70 -0.66 -0.58 -0.56
W F expansion relative to meniscus (mm) 0.43 0.42 0.33 0.35
Ideal Taper mold exit  (mm) 5.97 5.20 3.64 3.12
Ideal Taper mold exit  (%/mold) 1.19 1.04 0.73 0.62
Shell shrinkage - NF distortion (mm), exit 7.52 6.87 5.56 5.20
Shell shrinkage - NF distortion (%/mold), exit 1.50 1.37 1.11 1.04

 low carbon (0.07%C, 0.3%Mn, 0.03%Si)

 

The practice of adopting mold powders with high solidification temperature and low viscosity was proposed by 
Wolf to produce lower, but more uniform heat transfer rates to help avoid cracks in depression-sensitive grades, 
such as peritectic steels [3]. Slags with opposite properties are used for low and high carbon steels, to help avoid 
sticker problems.  Thus, this study used the 1215oC solidification temperature slag for the 0.13%C steel and 
1120oC slag for the low and high carbon steels, which is typical of industrial practice. 

The effects of steel grade, and its associated heat flux, on shell temperature, shell thickness, shrinkage and ideal 
taper are shown in Figs. 29 to 33. These figures show that the lower heat flux produces a hotter shell surface 
temperature. This effect appears to outweigh the importance of the extra shrinkage of the peritectic steels.  
Thus, peritectic steels experience less shrinkage and require less taper than either low or high carbon steels. 

The low carbon steels (<.08%C) have extra plastic strain, owing to their microstructure being in the soft, rapidly 
creeping delta phase.  This extra creep generated in the solid tends to lower the amount of shrinkage 
experienced by these grades.  The net effect is that low carbon steels experience both heat flux and shell 
shrinkage that is greater than for the other grades. 

Comparing the results in Table I at mold exit and 50 mm below meniscus indicates that most of the shrinkage 
occurs very near to the meniscus, especially for the peritectic grade. This is likely the reason for the great 
sensitivity of the shrinkage to the heat flux documented in the previous section. 

TAPER DURING AUTOMATED WIDTH CHANGE 

During an automated width change, taper should be changed dynamically so that the lateral movement of the 
narrow face walls matches the time for vertical movement of the shell down the mold.  The procedure for a 
widening width change is illustrated in Fig. 34.  
1)  Taper should first be increased, (to tapered) by moving the top of the narrowface mold walls outward.   
2)  This constant high taper should be maintained while the mold plates move outwards (at speed Vw), until the 

desired wider mold width is reached.  
3)  Finally, the mold bottoms should be moved outward to decrease the taper back to the standard taper.  
This procedure is reversed for a narrowing width change, as illustrated in Fig. 35. 
1)  Taper should first be decreased by moving the mold top inward. 
2)  Next, a constant low taper should be maintained while the mold plates are moving inwards. 
3)  Finally, the mold bottoms are moved inward to increase the taper back to the standard. 
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Fig. 34: Widening width change 
 

Fig. 33: Ideal taper for different steel grades  
(Table I conditions at 1.5m/min) 

Fig. 35: Narrowing width change 
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Fig. 30: Shell thickness for different steel grades (Table 
I conditions at 1.5m/min) 
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Where tapern is the nominal taper during steady casting per unit length down mold (%/m) defined in Eq.(2), Vw 
is the lateral speed of narrow face movement during width change, Vc is the casting speed, W is the average 
mold width, ΔW is the difference in mold width between top and bottom of mold and L is the mold length.  
Note that an increasing width change causes negative Vw, meaning that the dynamic taper is larger than 
nominal. 

CONCLUSIONS 

Computational models have been applied to predict ideal narrowface taper during continuous casting of steel 
slabs. The models quantify ideal taper under a variety of conditions and reveal the following: 
1.  Ideal taper depends mainly on mold heat flux and is very sensitive to its profile, especially near the 

meniscus.  
2.  More taper is needed near the top of the mold, such as achieved using parabolic taper. 
3.  The funnel in thin slab molds greatly lowers the ideal narrowface taper. 
3.  Ideal taper decreases only very slightly with higher casting speed (for same conditions and heat flux 

profile). 
4.  Mold powders with higher solidification temperature have lower heat flux (compared with both oil 

lubrication or low solidification temperature powders) and consequently have less shrinkage and less 
ideal taper (other conditions staying the same). 

5.  Peritectic steels generally require less taper than either low or high carbon steels, owing to their lower 
heat flux. 

6.  Procedures are presented for changing taper dynamically during an automated width change, as a 
function of horizontal mold plate movement. 
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 APPENDIX: STEEL THERMAL PROPERTIES 

Thermal conductivity and enthalpy assumed as a function of temperature and steel grade are given in Figs. A-I 
and II.  The nonlinear enthalpy gradients that accompany latent heat evolution were handled using a spatial 
averaging method by Lemon [22].  
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Fig. A- I: Thermal Conductivity of Steel Fig. A- II: Enthalpy for Plain Carbon Steels 
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